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Abstract 

 
Teleoperation of remote robotic systems over time 

delays in the range of 2-10 seconds poses a unique set 
of challenges. In the context of a supervisory control 
system for the JSC Robonaut humanoid robot, we have 
developed an “intelligent assistant” that integrates an 
Artificial Intelligence planner (JSHOP2) with 
execution monitoring of the state of both the human 
supervisor and the remote robot. The assistant reasons 
simultaneously about the world state on both sides of 
the time delay, which represents a novel application of 
this technology. The purpose of the assistant is to 
provide advice to the human supervisor about current 
and future activities, derived from a sequence of high-
level goals to be achieved. To do this, the assistant 
must simultaneously monitor and react to various data 
sources, including actions taken by the supervisor who 
is issuing commands to the robot (e.g. with a data 
glove), actions taken by the robot, and the environment 
of the robot, both as currently perceived over the time 
delay, along with the current sequence of goals.  
We have developed a “leader/follower” software 
architecture to handle the dual time-shifted streams of 
execution feedback. In this paper we describe the 
integrated planner and its executive, and how it 
operates in normal and anomaly situations.  
 
1. Introduction 
 

Teleoperation of humanoid robotics with medium-
range time delays (e.g. 2-10s) presents a variety of 
challenges of direct relevance to NASA’s current 
exploration initiatives. Such systems are applicable to a 
wide range of tasks, from earth orbit to the lunar 
surface, and hold out a promise of safer and cost- 
effective operations. As part of a project to 
demonstrate the combined use of supervisory control 
techniques, operator intent prediction, and an 
immersion cockpit for monitoring and control of robot 
state, we have developed an intelligent Task Level 
Assistant (TLA) that integrates an Artificial 
Intelligence planner with execution monitoring of the 
state of both the human supervisor and the remote 

robot. In this mode the planner must reason about the 
world state on both sides of the time delay, which 
represents a novel application of this technology. The 
application domain of our system is the JSC Robonaut 
humanoid robot. The purpose of the assistant is to 
provide advice to the human supervisor about current 
and future activities, derived from a sequence of high-
level goals to be achieved. To do this, the assistant 
must simultaneously monitor and react to various data 
sources, including: 
• actions taken by the supervisor who is issuing 

commands to the robot (e.g. with a data glove), 
and actions taken by the robot as reported over the 
time delay 

• the environment of the robot, as currently 
perceived over the time delay 

• the current sequence of goals 
As any of these change, the assistant must respond 
appropriately, detecting normal task completion as well 
as exception conditions. 

A number of methods have been developed to help 
deal with teleoperation of remote robots across a 
significant time delay: see Sheridan [1, 2] for an 
extensive review. The technique used in our system is 
supervisory control, in which the remote robot has 
some degree of autonomous capability, and higher 
level commands are sent by the human supervisor. 
Supervisory control thus includes elements of 
autonomy and intelligence, although the intelligence is 
usually associated only with the human supervisor. 
Other techniques that emphasize machine intelligence 
include mixed-initiative control [3] and adjustable 
autonomy [4]. A key goal of these approaches is to 
shift more responsibility from the human to the 
machine. 

In the following, we first describe the overall 
context of the system (Section 2) and the software 
architecture of the Task Level Assistant (Section 3). 
We then describe the planning component in more 
detail and the requirements derived from its use in a 
telepresence environment under active control by a 
human supervisor (Section 4). The time delay issue is 
addressed in Section 5, including the strategy of having 
the planner and associated execution monitor make use 



of a “leader/follower” model. This section also 
discusses the implications of unexpected events, 
including the reaction to failure and the intentional or 
unintentional deviation of the supervisor from the 
high-level goal sequence. Also included in this section 
is a scenario to illustrate the behavior of the system in a 
characteristic reactive situation. We summarize our 
conclusions, status, and directions for further research 
in Section 6. 
 
2. System Overview 
 

Our domain [5] consists of a smart cockpit and a 
remote robot, each on separate sides of the time delay. 
The robot is the Robonaut [6] anthropomorphic 
humanoid robot (Fig. 1), developed at NASA’s 
Johnson Space Center specifically for space operations. 
The robots have over 40 DOF, with two 7-DOF arms 
with 5-fingered hands, and pan/tilt stereo vision 
cameras. The Robonaut software provides a number of 
autonomous primitive behaviors (e.g. move to touch, 
grasp to position or force, etc.) that can be commanded 
by the supervisor. 

 

 
Figure 1. The NASA Robonaut dexterous robot 
 

The human supervisor works in a smart cockpit 
environment, which includes the hardware and 
software required to support remote operations. There 
are video and monitor displays of the remote (time-
delayed) robot. The supervisor has virtual reality (VR) 
immersion equipment as well, including a VR helmet 
along with a data glove for commanding the robot. The 
software in the cockpit includes an Operator Intent 
Prediction [7] component, an immersive environment 
for the supervisor [8], and the subject of this paper, the 

Task Level Assistant (TLA), which plans and monitors 
tasks performed by the supervisor and the robot. 

The TLA’s fundamental role is to generate an 
advisory task list (plan) based on a higher level 
sequence of goals, and then monitor execution of those 
tasks, advising the supervisor of progress towards 
achieving the goals, as well as on deviations from the 
plan and potential corrective actions. A key feature of 
the TLA is its advisory nature: the human supervisor 
remains fully in control of robot commanding. The 
TLA must therefore present a stable and accurate view 
of the plan status, and of the next steps that the 
supervisor is advised to take to achieve the goals in the 
sequence.  

The Robonaut environment for the system described 
here is a simple one: there are vertical and horizontal 
handrails that are to be grasped, picked up, and moved 
to a storage box. There is also a “button” to be pressed. 
These represent prototypes of activities that a robot 
might be designed to accomplish in a space or lunar 
construction task. 
 
3. Task Level Assistant (TLA) Architecture 
 

The overall architecture of the TLA in the context 
of the smart cockpit environment is illustrated in 
Fig. 2. Communication with the rest of the system is 
via a message bus over which messages and data are 
transferred. From this source comes status updates on 
those tasks that have been accomplished by the human 
supervisor (and thus which are translated into 
commands for the robot), and on those tasks 
accomplished by the robot (as received over the time 
delay). Also externally generated and managed is a 
goal sequence representing the intention of the 
supervisor. These goals may of course change at any 
time, and goals may be added or deleted. 

At the core of the TLA is the planner component 
(Fig. 2 center), described in detail in Section 4. The 
role of the planner is to generate a detailed task list 
from the goal sequence, for presentation to the 
supervisor. In addition to the goal sequence, the 
planner requires two other major inputs:  
• a domain model, describing the robot environment 

(handrails, buttons, etc.) and the operations of 
which the robot is capable (pick up handrail, push 
button, etc.)  

• current knowledge of the state of the supervisor 
and robot 

Based on these inputs, the planner converts the goal 
sequence and state information into a set of tasks to 
present to the supervisor, which will accomplish the 
goal sequence starting at the current state.  
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Figure 2. Architecture diagram of the TLA 

 
The executive component (Fig 2 bottom) plays a 

crucial role in positioning the planner in an effective 
advisory capacity. It conveys the plan to the rest of the 
system. It monitors all changes from the rest of the 
system, including state information from the supervisor 
and robot, as well as goals. It correlates these changes 
with the current plan, and detects situations where a 
replan is required, then sends out a notification to this 
effect. In this application it does not automatically 
replan: it is specifically left up to the supervisor to 
request a replan (however such an automatic replan 
function would be straightforward to provide). In 
addition to “replan required” notification, the executive 
also identifies other situations of interest to the human 
supervisor, including: 
• tasks executing out of plan order, either by the 

supervisor or by the robot 
• remote robot timeouts, where task completion was 

expected to have occurred within some adjustable 
time limit, but has not been confirmed 

• replan started/completed events 
• notification that no feasible plan can be found 

The executive also handles queries from the rest of 
the system, such as: next task to execute, execution 
status of a task, goal completion status, etc. 

Finally, the executive handles replan requests from 
the supervisor, ensuring that publication of the current 
plan is placed on hold while a newly generated plan is 
being stored. 

The implementation of the TLA is based on the 
Ensemble framework, an open architecture under 
development at JPL for mission operations software 
[9]. Ensemble is an adaptation of the Eclipse Rich 
Client Platform [10], and supports a component based 
application development model. The TLA has been 
developed in Java as a set of plug-in modules for 
Ensemble.  
 
4. Integrated Planning 
 

The planner chosen for the TLA is JSHOP2, a 
Hierarchical Task Network (HTN) planner developed 
at the University of Maryland [11] and presently 
available as an open source project [12]. The choice of 
JSHOP2 was driven by several considerations: 
• HTN planners are complete (guaranteed to find a 

plan if one exists), and build up a plan in time-
execution order, which is a natural way for the 
human users of the TLA to think about plan 
generation, i.e. based on planning a sequence of 
defined goals. 

• JSHOP2 has a straightforward but comprehensive 
domain modeling capability, amply rich for the 
TLA Robonaut environment problem. HTN 
“methods” expand down into primitive operations 
with defined preconditions and effects on world 
state. As such, they are relatively straightforward 
to define by someone familiar with the domain. 

• JSHOP2 is written in Java and was therefore 
relatively straightforward to integrate with the 
Eclipse Java-based platform chosen for TLA 
implementation. 

JSHOP2 does not include built-in temporal 
reasoning, although it is possible to model a variety of 
temporal constraints by using appropriate variables. 
However, for this problem domain, temporal reasoning 
is much less of an issue than state and operation 
modeling, and so is not a serious drawback. 

For this domain, the JSHOP2 model consists of the 
following: 
• the two arms of the Robonaut robot, each with an 

availability state, and a “preferred” arm to be used 
if available 

• a pair of handrails, one horizontal and one vertical, 
that can be grasped by the robot, moved, and 
placed in storage box 

• a pushbutton that can be pressed by either arm 
There are five primitive operations in the model, for 

picking up a handrail, dropping a handrail into the box, 
moving the arm over the box, setting down a handrail 
(not in the box), and pushing the button. There are two 
compound methods in the model: one for moving a 
handrail to the box, and one for pushing the button. 



The move-rail-to-box method is shown in Fig. 3. 
Variables such as ?arm and ?rail will be bound to 
concrete values during the plan search process.  
 

; move a rail to the box

(:method (move-rail-to-box ?arm ?rail ?goal)

  all-done

  (and (accomplished ?goal))

  ()

  arm-holding-rail

  (and (arm-available ?arm1) (holding ?arm1 ?rail)

          (not (accomplished ?goal)))

  ((!move-to-box ?arm1 ?rail ?goal)(!drop-in-box ?arm1 ?rail ?goal))

  arm-clear

  (and (arm-available ?arm) (clear ?arm) (not (in-box ?rail))

          (not (accomplished ?goal)))

  ((!pickup ?arm ?rail ?goal)

    (!move-to-box ?arm ?rail ?goal)

    (!drop-in-box ?arm ?rail ?goal))

pref-arm-not-avail

  (and (arm-available ?arm1) (clear ?arm1) (not (in-box ?rail))

          (not (accomplished ?goal)))

  ((!pickup ?arm1 ?rail ?goal)

    (!move-to-box ?arm1 ?rail ?goal)

    (!drop-in-box ?arm1 ?rail ?goal))

  )  
Figure 3: An example TLA JSHOP2 method. 

 
A JSHOP2 planning problem is defined by (a) a set 

of state values for all relevant variables, and (b) a 
sequence of goals to be achieved. The state values 
specify the assumed states of all entities at the start of 
the plan: e.g. that there are two handrails present, that 
both arms are available and not holding anything, etc. 
The goals are phrased as methods with specific values 
for their arguments, e.g. move rail “horiz- rail1” to the 
box with preferred arm “left”, to achieve goal “goal2”. 

The result of plan generation is a list of ground 
operations, i.e. primitive operations with specific 
values for all variables. Because JSHOP2’s HTN 
planning algorithm is complete, it is guaranteed to find 
a plan if one exists. It may be than no plan exists (e.g. 
both arms are unavailable), in which case an empty 
operation list will be returned. Our experience has been 
that for the TLA Robonaut domain, JSHOP2 runs very 
quickly and is not a source of significant delay in the 
system. Of course, for large models where more 
extensive search is required, this could become an 
issue. 
 
5. Leader/Follower Planning and 
Execution Monitoring 
 

In a conventional planner/executive architecture, the 
preconditions of each task are checked before it is 
initiated. In a time-delayed environment, this reduces 
to inefficient “bump-and-wait” execution. Feedback 
from the human supervisor’s completion of a task is 
indeed nearly immediate, but feedback from the remote 

robot is delayed, possibly by many seconds. To delay 
precondition checking and task dispatching is very 
inefficient, as illustrated in the schematic timelines of 
Fig. 4. Especially in the case where the time to perform 
operations (T) is relatively short compared to the time 
delay (D), it is wasteful to command an action and then 
wait for its completion before commanding the next 
one (Fig. 4a). Instead, it is desirable for the supervisor 
to be able to work ahead of the remote robot, thus 
realizing efficiencies analogous to “pipelining” 
commands (Fig. 4b). The efficiency gain can be 
substantial: waiting for remote tasks to complete 
lengthens overall execution time by the ratio D/T. 
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Supervisor
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Supervisor
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Figure 4. Time delayed task confirmation 

 
Thus for TLA we were led to implicitly split the 

tasks that make up the plan into “leader” (human 
supervisor) and “follower” (time-delayed robot) stages. 
There are thus dual feedback paths into the executive 
(and thus back to the planner) from these split tasks: a 
task may be completed by the leader, thus downstream 
leader tasks can be dispatched and the leader can 
“work ahead” of the follower as in Fig. 4b. However, a 
task is not truly complete until it is also done by the 
“follower” (the remote robot). Provided this happens in 
a timely manner, the plan will progress on track. 
Indeed, it is essential for the planner/executive to 
operate on the normal assumption that the follower will 
indeed follow, until this assumption is violated. 
Violations may occur when the human supervisor 
deviates from the goal activities, either intentionally or 
unintentionally; the robot fails to execute a command 
as directed, or times out; or the state of the robot 
environment changes or is progressively revealed. In 
its role as assistant, the TLA must gracefully handle 
these situations and notify the human supervisor. To 
replan, the current state model must be “backed up” to 
the most recent known state of the robot. Replans must 



also recognize which goals are accomplished and not 
expand and schedule their constituent tasks again. 

The design principles we adopted for the 
leader/follower split were as follows: 
• allow the leader to work arbitrarily far ahead of 

the follower, but keep track of expected time of 
completion of follower tasks, and provide 
notification if this time expires 

• when replanning, fall back to the most recently 
confirmed state from the follower, i.e. “roll back” 
state changes that are due solely to leader task 
completion 

• recognize any goals that have been accomplished 
and do not re-expand them when replanning 

• ensure plan continuity, e.g. if a plan makes use of 
the left arm, but the preferred right arm comes 
back in service, plan to complete ongoing left arm 
activities before planning to use the right arm 
again 

  
5.1. Normal Plan Execution 
 

For testing purposes, we have implemented a 
zoomable graphical user interface for the TLA based 

on the Piccolo toolkit [13][14]. A sample screen 
snapshot is shown in Fig. 5. The task sequence (ground 
operations and their arguments) is shown as the row of 
connected boxes, while the heavy vertical bar 
represents the break between the supervisor and the 
robot. Tasks to the right of the bar are the next ones for 
the human supervisor to execute. Tasks to the left of 
the bar have been executed by the human supervisor 
and are either confirmed completed by the robot (if 
grayed out) or are waiting for the robot to execute. If 
the next task for the robot has exceeded the expected 
time limit for confirmation, the alert box above it 
changes color. Below the task sequence is an event log, 
a current state snapshot, and testing controls for 
modifying the current state or the current goal 
sequence. In normal operation, the human supervisor 
can complete a set of tasks ahead of the robot and thus 
efficiently pipeline their combined activity. In Fig. 5, 
the supervisor has completed three tasks, while the 
robot has only acknowledged completing the first.  

 
 

 
Figure 5: Normal planning scenario 

 

5.2. Plan Deviations 
 

There are a number of plan deviations that the 
TLA must handle gracefully. On the robot side, these 
include: 
• robot (follower) time out: a task has taken longer 

than expected to confirm execution on the robot. 
In this case, TLA provides notification but takes 
no other action (in keeping with its advisory 
role) 

• out of order robot (follower) execution: again, 
TLA detects and provides notification of this 

situation, but takes no other action. Since this 
could be due not to failure to execute but simply 
to a communication gap, this is not treated by 
default by TLA as a reason to require replanning. 

• robot capability change: this is a state change 
(other than produced by executing a planned 
task) that impacts the current plan, for example 
the loss of availability of an arm required for 
future tasks. In this case, TLA generates 
notification of the state change, and that a replan 
is required. Replanning is not automatic, as 
dictated by TLA’s advisor-only role. 



On the human supervisor side, the operator can 
deviate from the planned task list, either intentionally 
or unintentionally. The approach taken by TLA in 
this situation is to assume that the deviation is 
unintentional, and that intentional deviations will be 
accompanied by goal changes to indicate the revised 
intent. Specifically: 
• human supervisor executes a task other than the 

next one in sequence: TLA sends notification, 
and also that a replan is required. If a replan is 
requested at this point, TLA will generate a plan 
to accomplish the original goals, which may 
include additional tasks to return to the original 
plan. 

• human supervisor changes the goal sequence: 
TLA sends notification and also that a replan is 
required. If a replan is requested at this point, it 
is based on current state and the revised goals.  

In addition to plan deviations that fall into the 
above categories, other errors and exceptions are 
recognized and handled by the executive, e.g. 
completing a task twice, completing an undefined 
task, etc. In general, these lead to exception 
notifications and logging, but no other direct action. 

 
5.3. Replanning 
 

Replanning is done on request to the TLA from 
the human supervisor. TLA tracks situations where 
the current plan is compromised and a replan is 
necessary, but does not generate new plans 
automatically. This is to conform with its human 
advisory role, and the principle of “no surprises” for 
the human supervisor. 
 

 
 

 
 

 
Figure 6: Replanning scenario due to change in right arm availability 

 
 

When a replan is requested, TLA goes through the 
following steps: 
• notify any listeners that a replan is beginning 
• lock the plan against queries while the new plan 

is being generated 

 
• roll back any state changes that were recorded 

due to the human supervisor (leader) completing 
activities and working ahead of the remote robot 
(follower). 

(b) 

(a) 



• generate a new plan and replace the old one in 
memory, archiving any completed activities for 
future reference 

• unlock for plan queries, and notify listeners that 
the replan is complete 

An example replan scenario is illustrated in Fig 6. 
In this case, the supervisor and robot have executed 
the first goal of a plan with the right arm when it 
becomes unavailable (Fig. 6a). Following a replan, 
the remaining unaccomplished goals are planned for 
execution with the left arm, which remains available 
(Fig. 6b). The Event Log (lower left of each figure) 
lists routine transitions as well as notifications and 
situations in which a replan is detected as necessary. 
 
6. Conclusions 
 

We have described a novel approach to integrating 
planning with execution monitoring in the context of 
human supervisory control of a robot over a mid-
range time delay. The Task Level Assistant (TLA) 
has been developed at JPL and run in a testbed 
environment to verify behavior in the Robonaut 
example domain. Our experiments to date have 
validated the choice of JSHOP2 as the core planner, 
and of the leader/follower architecture for tracking 
tasks over the time delay. JSHOP2 has provided fast, 
straightforward modeling and plan generation. The 
only drawback is the mapping to Lisp-like syntax for 
input, but we have automated this so it is transparent 
to users. It is worth noting that when the planner fails 
to find a plan, it is not always easy to determine 
exactly why. This is not a specific shortcoming of 
JSHOP2, however, but a reflection of the fact that 
interactions between plan model elements can be 
difficult to debug in general. 

We expect to run TLA with the Robonaut 
hardware in 2006. The current simple domain model 
will be augmented to reflect a more complete model 
of states and tasks. Areas for future research and 
development include an automatically replanning 
version of the system that maintains a current “latest” 
plan as well as a stable “baseline” plan, and the 
incorporation of temporal constraints. We anticipate 
that the TLA may find application to other mission 
operations problems as well. 
 

The research described in this paper was carried 
out at the Jet Propulsion Laboratory, California 
Institute of Technology, under a contract with the 
National Aeronautics and Space Administration. 
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